21st GiESCO International Meeting: ‘A Multidisciplinary Vision towards Sustainable Viticulture’ SIMULATING THE IMPACT OF CLIMATE CHANGE ON GRAPEVINE BEHAVIOUR AND VITICULTURAL ACTIVITIES 1 1 2 3

Cyril TISSOT *, Mathias ROUAN , Renan LE ROUX , Etienne NEETHLING , Laure de 4 4 4 2 5 5 RERREGUIER , Théo PETITJEAN , Cornelis van LEEUWEN , Hervé QUENOL , Irima LIVIU , Cristi PATRICHE 1 UMR 6554 CNRS LETG, Brest, France UMR 6554 CNRS LETG, Rennes, France 3 LEESA, Angers, France 4 ISVV, Villenave-d'Ornon, France 5 University of Agricultural Sciences, Iasi, Romania 2 *Corresponding author: cyril.tissot@univ-brest.fr

Abstract: Context and purpose of the study‐ Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007 and 2015; Van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short‐term impacts on wine quality and style, to long‐term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010 ; Quénol 2014). Within the context of a global changing climate, most studies that address future impacts and potential adaptation strategies are largely based on modelling technologies. However, very few studies model the complex interaction between environmental features, plant behaviour and farming activities at local scales. In viticulture, this level of assessment is of particular importance, as it is the scale where adaptation matters the most. Within this context, it seems appropriate to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and the dynamics of viticultural activities. Material and methods ‐ Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), has been designed to describe viticultural practices with responsive agents constrained by exogenous variables (biophysical, socio‐economic and regulatory constraints). Based on multi‐agent paradigm, SEVE has two principle objectives, first, to simulate grapevine phenology and grape ripening according to climate variability and secondly, to simulate viticultural practices and adaptation strategies under environmental, economic and socio‐technical constraints. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. The reaction chain results from a combination of natural and anthropogenic stresses integrated at different scale level (from plot to vineyard). Results ‐ Simulation results underline that small scale variability is strongly linked with vine phenology stages and ripeness potential. Over the next century, winegrowers will likely be confronted by increasing temperatures and changing rainfall patterns that will have important impacts on agronomic itineraries and adaptation strategies. Through different experiment in european vineyards in the context of ADVICLIM project (http://www.adviclim.eu/), SEVE model provide prospective simulation of potential adaptation strategies from short‐term (e.g. in harvest management practices) to long‐term adjustment, such as in varietal selection. In response to increasing temperatures and changing rainfall patterns, they vary therefore in nature and effectiveness, where longterm measures in the choice in grapevine variety and the use of irrigation seem to be the most effective.

Keywords: grapevine, production strategies, climate change, multi‐agents model, adaptation, temporal dynamics, spatial variability, wine growers June 23 - 28, 2019 | Thessaloniki | Greece GiESCO Thessaloniki | 55 21st GiESCO International Meeting: ‘A Multidisciplinary Vision towards Sustainable Viticulture’
Réservé aux membres / Members only

Devenir membre / Membership